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VARIATIONAL PRINCIPLE OF RELATIVISTIC 
DENSITY FUNCTIONAL THEORY FOR WEAKLY 

INHOMOGENEOUS ELECTRON LIQUID 
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and 
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(Received 12 Mmrch 1989) 

A variational principle is set up in the framework of relativistic density functional theory, which yields the 
relativistic linear-response relation between displaced charge v ( x )  and weak perturbing potential V ( x )  in an 
electron liquid. In particular, the kinetic energy is calculated to second-order in the displaced charge v(x). 

KEY WORDS: Dirac equation, linear response, kinetic energy 

1 INTRODUCTION 

In relativistic density functional theory of inhomogeneous electron assemblies func- 
tionals have been approximated under the assumption of sufficiently slowly varying 
densities, see e.g. Ref. 1 and references therein. However, the opposite situation of 
weak, but arbitrarily rapid variation seems not to be treated in the relativistic domain 
up to now. It is just this area in which the present contribution lies. 

Specifically, in this paper, and in order to set up quite explicit results for the kinetic 
energy functional of the relativistic theory, we consider the case of weakly inhomogen- 
eous electron assemblies, produced by inserting a weak single-particle potential 
energy V ( x )  into an initially uniform electron liquid. Such an approach has been 
fruitful when applied, for example, to defects2 and to their interaction3 in metals, but 
these early studies were made with the single-particle Schrodinger equation as starting 
point. 

In the present work then, based on the Dirac relativistic wave equation, we let n(x)  
be the perturbed density due to a localized potential V ( x )  introduced into a relativistic 
electron liquid of homogeneous density no. 

Since V ( x )  is taken to be weak, n ( x )  becomes 

n ( x )  = no + v ( x )  (1.1) 
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228 R. B A L T I N  AND N. H.  M A R C H  

where we have weak deviations v from homogeneity such that 

Within this framework, our initial aim below is to set up the relativistic kinetic energy 
functional to second order in the displaced electron density v(x). 

2 KINETIC ENERGY FOR HOMOGENEOUS FREE ELECTRON 
LIQUID 

The kinetic energy density t [ n , ]  of a uniform relativistic liquid of free electrons was 
first given by Jensen4. In early work on the model of independent electrons in the 
presence of a square barrier5, we regained t [no ]  as a byproduct, which was shown to 
be compatible with the Vallarta-Rosen6 (VR) relativistic generalization of Thomas- 
Fermi theory. t [no]  is given by 

t[no] = tVR[n,] 

=  yo(; + s 3 J i  + cl; - 4s; - t ln(g0 + fia1 (2.1 ) 

with 

Thus the kinetic energy contained in a finite volume R is given by 
P 

= Rt"R[n,]. 

(2.2a,b) 

(2.3) 

Of course, TiR[n,] = 00. (R, is the infinite space). Our main objective in 
the present work is to generalize the above result (2.3) to include all terms up to and 
including second-order contributions in the displaced charge v(x). 

3 KlNETlC ENERGY T O  FIRST ORDER IN THE DENSITY 
DEVIATION v(x) 

When the potential V ( x )  is switched on, the change of kinetic energy density must be 
of the form 

(3.1) 

where the (yet unknown) function w1 depends not only on no but also on the distance 
Ix - y 1, because the disturbed system was homogeneous originally. The correspond- 
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ing contribution to the kinetic energy, contained in the whole space R,,  is then given 

(3.2) 

by 

7,11L11 = S, , .d ’X [  j n x M J l ( ~ O >  Ix  - Y l ) V ( Y )  d3Y 1 
Both t ,  and Tl, are supposed to exist even in the case R = R, corresponding to  our 
assumption of localization of V .  

When the order of integrations is changed, TI takes the form 

where 

Wl(no) = j o x w l ( n o ,  I X ’ I )  d 3 X ’ ,  

which is the structure we were seeking for the first-order kinetic energy. 

(3.3) 

(3.4) 

4 KINETIC ENERGY TO SECOND ORDER IN T H E  DENSITY 
DEVIATION v(x) 

The most general form of the second order term o f t  can be written as 

r2ck31(x) = s,,, j f > z w z ( n o 3  Ix  - Y I 3  Ix  - ZI, I Y  - z l )  

x V(Y)\,(Z) d3y d3z ,  (4.1 ) 

again because of the homogeneity of the unperturbed system. Thus the contribution 
to the kinetic energy from (4.1) is given by 

which can be transformed to yield 

where 

Wz(no, c.) = I,,d3uw2(.,, 11, Iu - v ( ,  v). 

Noting that 

Iu - VI = Ju’ + LIZ - 2uu cos 9 
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where 9 is the angle between vectors u and v, integration over polar coordinates u, 9, cp 
in u-space shows that W, in fact is dependent on no and o only. 

Summarizing the results of Sections 2-4, we obtain, within the framework of our 
specified approximation 

(4.6) 

with TVR, TI,  and T, given by Eqs (2.3), (3.3) and (4.3). Of course, the limit R -, R, 
exists only for the difference on the l/hs., the separate terms Tn[no + v] and Tr’;R[nO] 
being divergent in this limit. 

lim [Tn[no + v] - ~ i ~ [ n ~ ] ]  = Tl[v] + TJV] 
n-n, 

5 VARIATION OF THE DENSITY WITH no KEPT FIXED; 
EULER EQUATION 

An electronic assembly having strictly constant density no in space must be infinite; in 
particular the number of electrons is infinite so that we cannot speak of conservation 
of the particle number when performing a variation of the density. Rather, we have to 
keep fixed the chemical potential or, equivalently, to keep fixed no. 

Using Eqs. (2.3), (3.3), (4.3) and (4.6), the variation of Tn[no + v] yields 

I 6 lim (Tn[no + v] - T y [ n o ] )  Ln= 
= w,(no> Jn,~v(x) d3X + In- Jn:3x d 3 y ~ n 0 ,  y) 

= S,,.d’.{ wl(n0) + [nmw,(no. Y)[v(x + y> + v(x - Y)I d3Y ~ x )  (5.1) 

x [v(x + y)6v(x) + v(x)6v(x + y)] 

I 
i.e. we can read off 

= W,(n,) + 2 JnJV2(no, Ix - x’l)v(x’) d3X’ 

where 

Hence the Euler equation 

6T -+  v = p  
6V (5.4) 
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reads 

Wl(n,) + 2 jQm W2(n,, I x - x‘l)v(x’) d3x’  + V(x) = p (5 .5)  

In this equation, however, p is fixed and equals p,, the chemical potential with V = 0. 
For this case, Eq. (5.5) becomes 

(5.6) Wl(n,) = p, = ,/m2c4 + h2~2(3~2n,)2’3 - mc2 

since v(x) = 0 for V = 0. Using p = p, and Eq. (5.6), Eq. (5.5) yields 

WZ(n0, I X  - x’~)v(x’)  d3x’  + V(X) = 0. (5.7) 

6 RELATION OF W2 TO LINEAR-RESPONSE V-V-RELATION 

Equation (5.7) has to be compared with the linear-response relation 

v(x) = F(n, ,  ( x  - x‘l)V(x’) d 3 x ‘  s,. 
where F(n, ,  Ix - x’l) was derived in earlier work’ 

1 kjl(2klx - x’l) 
x lokF [jo(2klx - x‘l) + 

k2dk 
X [ 1 + (32]1’2 

with Fermi wave number 

k, = (3n2n0)”3. (6.3) 
Equation (6.1) is a generalization of the non-relativistic result of March and Murray2. 

To effect this comparison, we have to solve Eq. (5.7) for v(x), which can be done by 
use of Fourier transforms. Multiplying Eq. (5.7) by eik’“ and integrating over x we 
obtain 

2P2(n0, k)v“(k) + P(k) = 0 (6.4) 
or 

where the tilde denotes the Fourier transform. It should be noted that the Fourier 
transform of W2(n,, 1x1) depends on k = I kl only. 
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232 R .  BALTIN AND N. H.  MARCH 

On the other hand, the Fourier transform of (6.1) reads 

O(k) = F(no, k ) V ( k )  

where the Fourier transform of F(n,, 1x1) is given bys 

+ y (1 - ti) + 2yyF - K K F  

K F  3~ 6 2 + 2yyF + K K F  

In Eq. (6.7), the following abbreviations have been adopted 

t i = X k ; y G ( l  + q h  1 -2 ) l / 2  . 

Comparing Eq.  (6.5) with E q .  (6.6), we immediately see that 

which is the relation sought. Formally we obtain from (6.9) 

1 
W2(n0, x )  = ~ 

q 2 ( n O ,  k)e-"'" d3k 
(27CS 

(6.8a,b,c) 

(6.8d,e) 

(6.9) 

(6.10) 

To obtain well-defined expressions we have to investigate the asymptotic behaviour of 
IIF as k + m: 

as k + x, where 

(6.1 1 )  

(6.12) 

1 k 2  

(6.14) 
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RELATIVISTIC THEORY OF INHOMOGENEOUS ELECTRON LIQUID 233 

Using the relation 
k Z e - i k . x  d 3 k  = -V: e - i k . X  d 3 k  s 

= - ( 2 4 3 ~ : s ( ~ ) ,  
s 

W2(n,, x) can be written 

where the integrand of 

(6.15) 

(6.16) 

(6.17) 

falls off rapidly enough as k + ZL to guarantee convergence. 

7 THE RELATIVISTIC ENERGY FUNCTIONAL T O  SECOND ORDER 
IN DISPLACED CHARGE v 

We are now able to establish the relativistic kinetic energy expression to second order 
with respect to the displaced charge v(x) = n(x) - no. Using equations (3.3), (4.3), 
(4.6), (5.6) and (6.16) we obtain 

lim { q1[no + 111 - T:~[~,]J = p, v(x) d 3 x  
f1-n ' Jn. 

S(n,, x')v(x)v(x + x') d 3 x  d3x'  

~ [V,' S(x')]v(x)v(x + x') d3x d3x' 
1 

c4?Q G(x')v(x)v(x + x') d 3 X  d 3 X '  
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The first expression on the right hand side corresponds to the non-relativistic term, 
Eq. (2.12), of the work of Corless and March3. However, whereas in Ref. 3 the 
higher-order terms were written in terms of V ,  Eq. (7.1) is expressed only in terms of 
the displaced charge, as required for density functional theory. 

8 SUMMARY 

Equation (7.1) is the main result of the present work, expressing the independent- 
particle kinetic energy, measured relative to the Vallarta-Rosen6 homogeneous result, 
solely in terms of the displaced charge v(x) to second-order in this quantity. Variation 
of Eq. (7.1) with respect to v leads back to an Euler equation which is the linear 
response relation between displaced electron density and perturbing potential V in an 
electron liquid. Within an independent-particle framework, it is therefore clear that an 
acceptable relativistic kinetic energy functional must expand, to second-order in v ,  to 
this expression (7.1). Applications of such a result to interaction between defects in 
metals has been worked out fully in Ref. 3 in the limit when the fine structure constant 
tends to zero; the reader interested in specific applications is referred to that study. 
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